A quantitative reverse Faber-Krahn inequality for the first Robin eigenvalue with negative boundary parameter

نویسندگان

چکیده

The aim of this paper is to prove a quantitative form reverse Faber-Krahn type inequality for the first Robin Laplacian eigenvalue λ β with negative boundary parameter among convex sets prescribed perimeter. In that framework, ball only maximizer and distance from optimal set considered in terms Hausdorff distance. key point our stategy Steklov-type problem related original problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE p - FABER - KRAHN INEQUALITY

When revisiting the Faber-Krahn inequality for the principal pLaplacian eigenvalue of a bounded open set in Rn with smooth boundary, we simply rename it as the p-Faber-Krahn inequality and interestingly find that this inequality may be improved but also characterized through the Maz’ya’s capacity method, the Euclidean volume and the Sobolev-type inequality. 1. The p-Faber-Krahn Inequality Intro...

متن کامل

THE p-FABER-KRAHN INEQUALITY NOTED

When revisiting the Faber-Krahn inequality for the principal pLaplacian eigenvalue of a bounded open set in Rn with smooth boundary, we simply rename it as the p-Faber-Krahn inequality and interestingly find that this inequality may be improved but also characterized through Maz’ya’s capacity method, the Euclidean volume, the Sobolev type inequality and MoserTrudinger’s inequality. 1. The p-Fab...

متن کامل

An Alternative Approach to the Faber-krahn Inequality for Robin Problems

We give a simple proof of the Faber-Krahn inequality for the first eigenvalue of the p-Laplace operator with Robin boundary conditions. The techniques introduced allow to work with much less regular domains by using test function arguments. We substantially simplify earlier proofs, and establish the sharpness of the inequality for a larger class of domains at the same time.

متن کامل

A Faber-Krahn-type inequality for regular trees

We show a Faber-Krahn-type inequality for regular trees with boundary.

متن کامل

Faber-krahn Inequalities for the Robin-laplacian: a Free Discontinuity Approach

We introduce a new method to prove the isoperimetric property of the ball for the first eigenvalue of the Robin-Laplacian. Our technique applies to a full range of Faber-Krahn inequalities in a nonlinear setting and for non smooth domains, including the open case of the torsional rigidity. The analysis is based on regularity issues for free discontinuity problems in spaces of functions of bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2021

ISSN: ['1262-3377', '1292-8119']

DOI: https://doi.org/10.1051/cocv/2020079